Multifactor Authentication (MFA)

CAS provides support for a variety of multifactor authentication providers and options, while allowing one to design their own. The secondary authentication factor always kicks in after the primary step and existing authentication sessions will be asked to step-up to the needed multifactor authentication factor, should the request or trigger require it. The satisfied authentication context is communicated back to the application as well to denote a successful multifactor authentication event.

At a minimum, you need answer the following questions:

  • Which provider(s) are we using for multifactor authentication?
  • How and for whom are we triggering multifactor authentication?

Supported Providers

The following multifactor providers are supported by CAS.

Provider Id Instructions
Duo Security mfa-duo See this guide.
YubiKey mfa-yubikey See this guide.
RSA/RADIUS mfa-radius See this guide.
Google Authenticator mfa-gauth See this guide.
FIDO2 WebAuthN mfa-webauthn See this guide.
CAS Simple mfa-simple See this guide.
Twilio mfa-twilio See this guide.
Inwebo mfa-inwebo See this guide.
Custom Custom See this guide.
:information_source: Azure Multifactor

Microsoft has removed the ability for external SSO servers to use Azure MFA. To use Azure MFA, you must also have all your users authenticate using Azure AD SSO. You may want to route authentication requests to Azure AD SSO using the delegated authentication features of CAS.

Configuration

The following settings and properties are available from the CAS configuration catalog:

The configuration settings listed below are tagged as Required in the CAS configuration metadata. This flag indicates that the presence of the setting may be needed to activate or affect the behavior of the CAS feature and generally should be reviewed, possibly owned and adjusted. If the setting is assigned a default value, you do not need to strictly put the setting in your copy of the configuration, but should review it nonetheless to make sure it matches your deployment expectations.

The configuration settings listed below are tagged as Optional in the CAS configuration metadata. This flag indicates that the presence of the setting is not immediately necessary in the end-user CAS configuration, because a default value is assigned or the activation of the feature is not conditionally controlled by the setting value. In other words, you should only include this field in your configuration if you need to modify the default value or if you need to turn on the feature controlled by the setting.

This CAS feature is able to accept signing and encryption crypto keys. In most scenarios if keys are not provided, CAS will auto-generate them. The following instructions apply if you wish to manually and beforehand create the signing and encryption keys.

Note that if you are asked to create a JWK of a certain size for the key, you are to use the following set of commands to generate the token:

1
2
wget https://raw.githubusercontent.com/apereo/cas/master/etc/jwk-gen.jar
java -jar jwk-gen.jar -t oct -s [size]

The outcome would be similar to:

1
2
3
4
5
{
  "kty": "oct",
  "kid": "...",
  "k": "..."
}

The generated value for k needs to be assigned to the relevant CAS settings. Note that keys generated via the above algorithm are processed by CAS using the Advanced Encryption Standard (AES) algorithm which is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology.


CAS takes advantage of Apache Groovy in forms of either embedded or external scripts that allow one to, by default, dynamically build constructs, attributes, access strategies and a lot more. To activate the functionality described here, you may need to prepare CAS to support and integrate with Apache Groovy.

Please review this guide to configure your build.

Configuration Metadata

The collection of configuration properties listed in this section are automatically generated from the CAS source and components that contain the actual field definitions, types, descriptions, modules, etc. This metadata may not always be 100% accurate, or could be lacking details and sufficient explanations.

Be Selective

This section is meant as a guide only. Do NOT copy/paste the entire collection of settings into your CAS configuration; rather pick only the properties that you need. Do NOT enable settings unless you are certain of their purpose and do NOT copy settings into your configuration only to keep them as reference. All these ideas lead to upgrade headaches, maintenance nightmares and premature aging.

YAGNI

Note that for nearly ALL use cases, declaring and configuring properties listed here is sufficient. You should NOT have to explicitly massage a CAS XML/Java/etc configuration file to design an authentication handler, create attribute release policies, etc. CAS at runtime will auto-configure all required changes for you. If you are unsure about the meaning of a given CAS setting, do NOT turn it on without hesitation. Review the codebase or better yet, ask questions to clarify the intended behavior.

Naming Convention

Property names can be specified in very relaxed terms. For instance cas.someProperty, cas.some-property, cas.some_property are all valid names. While all forms are accepted by CAS, there are certain components (in CAS and other frameworks used) whose activation at runtime is conditional on a property value, where this property is required to have been specified in CAS configuration using kebab case. This is both true for properties that are owned by CAS as well as those that might be presented to the system via an external library or framework such as Spring Boot, etc.

:information_source: Note

When possible, properties should be stored in lower-case kebab format, such as cas.property-name=value. The only possible exception to this rule is when naming actuator endpoints; The name of the actuator endpoints (i.e. ssoSessions) MUST remain in camelCase mode.

Settings and properties that are controlled by the CAS platform directly always begin with the prefix cas. All other settings are controlled and provided to CAS via other underlying frameworks and may have their own schemas and syntax. BE CAREFUL with the distinction. Unrecognized properties are rejected by CAS and/or frameworks upon which CAS depends. This means if you somehow misspell a property definition or fail to adhere to the dot-notation syntax and such, your setting is entirely refused by CAS and likely the feature it controls will never be activated in the way you intend.

Validation

Configuration properties are automatically validated on CAS startup to report issues with configuration binding, specially if defined CAS settings cannot be recognized or validated by the configuration schema. Additional validation processes are also handled via Configuration Metadata and property migrations applied automatically on startup by Spring Boot and family.

Indexed Settings

CAS settings able to accept multiple values are typically documented with an index, such as cas.some.setting[0]=value. The index [0] is meant to be incremented by the adopter to allow for distinct multiple configuration blocks.

Triggers

Multifactor authentication can be activated via a number of triggers. To learn more, please see this guide.

Bypass Rules

Each multifactor provider is equipped with options to allow for MFA bypass. To learn more, please see this guide.

Failure Modes

CAS will consult the current configuration in the event that the provider being requested is unreachable to determine how to proceed. To learn more, please see this guide.

Provider Selection

There are options and controls available to allow CAS to select a multifactor authentication provider, in case multiple triggers and conditions activate multiple providers. To learn more, please see this guide.