Cassandra Ticket Registry

Cassandra integration is enabled by including the following dependency in the WAR overlay:

1
2
3
4
5
<dependency>
    <groupId>org.apereo.cas</groupId>
    <artifactId>cas-server-support-cassandra-ticket-registry</artifactId>
    <version>${cas.version}</version>
</dependency>
1
implementation "org.apereo.cas:cas-server-support-cassandra-ticket-registry:${project.'cas.version'}"
1
2
3
4
5
6
7
8
9
dependencyManagement {
    imports {
        mavenBom "org.apereo.cas:cas-server-support-bom:${project.'cas.version'}"
    }
}

dependencies {
    implementation "org.apereo.cas:cas-server-support-cassandra-ticket-registry"
}
1
2
3
4
5
6
7
8
9
10
dependencies {
    /*
    The following platform references should be included automatically and are listed here for reference only.
            
    implementation enforcedPlatform("org.apereo.cas:cas-server-support-bom:${project.'cas.version'}")
    implementation platform(org.springframework.boot.gradle.plugin.SpringBootPlugin.BOM_COORDINATES)
    */

    implementation "org.apereo.cas:cas-server-support-cassandra-ticket-registry"
}

This registry stores tickets in Apache Cassandra instances. Tickets are expected to be found/stored in a castickets table with a default write consistency of LOCAL_QUORUM and read consistency of ONE.

Actuator Endpoints

The following endpoints are provided by CAS:

 Reports back general health status of the system, produced by various monitors.

 Reports back general health status of the system, produced by various monitors.


Troubleshooting

To enable additional logging, configure the log4j configuration file to add the following levels:

1
2
3
4
5
6
...
<Logger name="com.datastax.driver" level="debug" additivity="false">
    <AppenderRef ref="casConsole"/>
    <AppenderRef ref="casFile"/>
</Logger>
...

Configuration

The following settings and properties are available from the CAS configuration catalog:

The configuration settings listed below are tagged as Required in the CAS configuration metadata. This flag indicates that the presence of the setting may be needed to activate or affect the behavior of the CAS feature and generally should be reviewed, possibly owned and adjusted. If the setting is assigned a default value, you do not need to strictly put the setting in your copy of the configuration, but should review it nonetheless to make sure it matches your deployment expectations.

  • cas.ticket.registry.cassandra.crypto.encryption.key=
  • The encryption key. The encryption key by default and unless specified otherwise must be randomly-generated string whose length is defined by the encryption key size setting.

    org.apereo.cas.configuration.model.core.util.EncryptionRandomizedCryptoProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.crypto.signing.key=
  • The signing key is a JWT whose length is defined by the signing key size setting.

    This setting supports the Spring Expression Language.

    org.apereo.cas.configuration.model.core.util.SigningJwtCryptoProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.contact-points=
  • The list of contact points to use for the new cluster. Each contact point should be defined using the syntax address:port.

    org.apereo.cas.configuration.model.support.cassandra.ticketregistry.CassandraTicketRegistryProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.keyspace=
  • Keyspace address to use where the cluster would connect.

    org.apereo.cas.configuration.model.support.cassandra.ticketregistry.CassandraTicketRegistryProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.password=
  • Password to bind and establish a connection to cassandra.

    org.apereo.cas.configuration.model.support.cassandra.ticketregistry.CassandraTicketRegistryProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.username=
  • Username to bind and establish a connection to cassandra.

    org.apereo.cas.configuration.model.support.cassandra.ticketregistry.CassandraTicketRegistryProperties.

    How can I configure this property?

    The configuration settings listed below are tagged as Optional in the CAS configuration metadata. This flag indicates that the presence of the setting is not immediately necessary in the end-user CAS configuration, because a default value is assigned or the activation of the feature is not conditionally controlled by the setting value. In other words, you should only include this field in your configuration if you need to modify the default value or if you need to turn on the feature controlled by the setting.

  • cas.ticket.registry.cassandra.crypto.alg=AES
  • The signing/encryption algorithm to use.

    org.apereo.cas.configuration.model.core.util.EncryptionRandomizedSigningJwtCryptographyProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.crypto.enabled=true
  • Whether crypto operations are enabled.

    org.apereo.cas.configuration.model.core.util.EncryptionRandomizedSigningJwtCryptographyProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.crypto.encryption.key-size=16
  • Encryption key size.

    org.apereo.cas.configuration.model.core.util.EncryptionRandomizedCryptoProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.crypto.signing-enabled=true
  • Whether signing encryption operations are enabled.

    org.apereo.cas.configuration.model.core.util.EncryptionRandomizedSigningJwtCryptographyProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.crypto.signing.key-size=512
  • The signing key size.

    org.apereo.cas.configuration.model.core.util.SigningJwtCryptoProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.consistency-level=LOCAL_QUORUM
  • Query option consistency level. The consistency level set through this method will be use for queries that don't explicitly have a consistency level. Accepted values are:ALL, ANY, EACH_QUORUM, LOCAL_ONE, LOCAL_QUORUM, LOCAL_SERIAL, ONE, QUORUM, SERIAL, THREE, TWO.

    org.apereo.cas.configuration.model.support.cassandra.ticketregistry.CassandraTicketRegistryProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.drop-tables-on-startup=false
  • Flag that indicates whether to drop tables on start up.

    org.apereo.cas.configuration.model.support.cassandra.ticketregistry.CassandraTicketRegistryProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.local-dc=
  • Used by a DC-ware round-robin load balancing policy. This policy provides round-robin queries over the node of the local data center. It also includes in the query plans returned a configurable number of hosts in the remote data centers, but those are always tried after the local nodes. In other words, this policy guarantees that no host in a remote data center will be queried unless no host in the local data center can be reached.

    org.apereo.cas.configuration.model.support.cassandra.ticketregistry.CassandraTicketRegistryProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.serial-consistency-level=LOCAL_SERIAL
  • Query option serial consistency level. The serial consistency level set through this method will be use for queries that don't explicitly have a serial consistency level. Accepted values are:ALL, ANY, EACH_QUORUM, LOCAL_ONE, LOCAL_QUORUM, LOCAL_SERIAL, ONE, QUORUM, SERIAL, THREE, TWO.

    org.apereo.cas.configuration.model.support.cassandra.ticketregistry.CassandraTicketRegistryProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.ssl-cipher-suites=
  • The cipher suites to use, or empty/null to use the default ones. Note that host name validation will always be done using HTTPS algorithm.

    org.apereo.cas.configuration.model.support.cassandra.ticketregistry.CassandraTicketRegistryProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.ssl-protocols=
  • Set the protocol versions enabled for use on this engine. Once the setting is set, only protocols listed in the protocols parameter are enabled for use.

    org.apereo.cas.configuration.model.support.cassandra.ticketregistry.CassandraTicketRegistryProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.timeout=PT5S
  • The request timeout. This defines how long the driver will wait for a given Cassandra node to answer a query.

    This settings supports the java.time.Duration syntax [?].

    org.apereo.cas.configuration.model.support.cassandra.ticketregistry.CassandraTicketRegistryProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.crypto.encryption.key=
  • The encryption key. The encryption key by default and unless specified otherwise must be randomly-generated string whose length is defined by the encryption key size setting.

    org.apereo.cas.configuration.model.core.util.EncryptionRandomizedCryptoProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.crypto.signing.key=
  • The signing key is a JWT whose length is defined by the signing key size setting.

    This setting supports the Spring Expression Language.

    org.apereo.cas.configuration.model.core.util.SigningJwtCryptoProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.crypto.alg=AES
  • The signing/encryption algorithm to use.

    org.apereo.cas.configuration.model.core.util.EncryptionRandomizedSigningJwtCryptographyProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.crypto.enabled=true
  • Whether crypto operations are enabled.

    org.apereo.cas.configuration.model.core.util.EncryptionRandomizedSigningJwtCryptographyProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.crypto.encryption.key-size=16
  • Encryption key size.

    org.apereo.cas.configuration.model.core.util.EncryptionRandomizedCryptoProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.crypto.signing-enabled=true
  • Whether signing encryption operations are enabled.

    org.apereo.cas.configuration.model.core.util.EncryptionRandomizedSigningJwtCryptographyProperties.

    How can I configure this property?

  • cas.ticket.registry.cassandra.crypto.signing.key-size=512
  • The signing key size.

    org.apereo.cas.configuration.model.core.util.SigningJwtCryptoProperties.

    How can I configure this property?

    This CAS feature is able to accept signing and encryption crypto keys. In most scenarios if keys are not provided, CAS will auto-generate them. The following instructions apply if you wish to manually and beforehand create the signing and encryption keys.

    Note that if you are asked to create a JWK of a certain size for the key, you are to use the following set of commands to generate the token:

    1
    2
    
    wget https://raw.githubusercontent.com/apereo/cas/master/etc/jwk-gen.jar
    java -jar jwk-gen.jar -t oct -s [size]
    

    The outcome would be similar to:

    1
    2
    3
    4
    5
    
    {
      "kty": "oct",
      "kid": "...",
      "k": "..."
    }
    

    The generated value for k needs to be assigned to the relevant CAS settings. Note that keys generated via the above algorithm are processed by CAS using the Advanced Encryption Standard (AES) algorithm which is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology.


    Configuration Metadata

    The collection of configuration properties listed in this section are automatically generated from the CAS source and components that contain the actual field definitions, types, descriptions, modules, etc. This metadata may not always be 100% accurate, or could be lacking details and sufficient explanations.

    Be Selective

    This section is meant as a guide only. Do NOT copy/paste the entire collection of settings into your CAS configuration; rather pick only the properties that you need. Do NOT enable settings unless you are certain of their purpose and do NOT copy settings into your configuration only to keep them as reference. All these ideas lead to upgrade headaches, maintenance nightmares and premature aging.

    YAGNI

    Note that for nearly ALL use cases, declaring and configuring properties listed here is sufficient. You should NOT have to explicitly massage a CAS XML/Java/etc configuration file to design an authentication handler, create attribute release policies, etc. CAS at runtime will auto-configure all required changes for you. If you are unsure about the meaning of a given CAS setting, do NOT turn it on without hesitation. Review the codebase or better yet, ask questions to clarify the intended behavior.

    Naming Convention

    Property names can be specified in very relaxed terms. For instance cas.someProperty, cas.some-property, cas.some_property are all valid names. While all forms are accepted by CAS, there are certain components (in CAS and other frameworks used) whose activation at runtime is conditional on a property value, where this property is required to have been specified in CAS configuration using kebab case. This is both true for properties that are owned by CAS as well as those that might be presented to the system via an external library or framework such as Spring Boot, etc.

    :information_source: Note

    When possible, properties should be stored in lower-case kebab format, such as cas.property-name=value. The only possible exception to this rule is when naming actuator endpoints; The name of the actuator endpoints (i.e. ssoSessions) MUST remain in camelCase mode.

    Settings and properties that are controlled by the CAS platform directly always begin with the prefix cas. All other settings are controlled and provided to CAS via other underlying frameworks and may have their own schemas and syntax. BE CAREFUL with the distinction. Unrecognized properties are rejected by CAS and/or frameworks upon which CAS depends. This means if you somehow misspell a property definition or fail to adhere to the dot-notation syntax and such, your setting is entirely refused by CAS and likely the feature it controls will never be activated in the way you intend.

    Validation

    Configuration properties are automatically validated on CAS startup to report issues with configuration binding, specially if defined CAS settings cannot be recognized or validated by the configuration schema. Additional validation processes are also handled via Configuration Metadata and property migrations applied automatically on startup by Spring Boot and family.

    Indexed Settings

    CAS settings able to accept multiple values are typically documented with an index, such as cas.some.setting[0]=value. The index [0] is meant to be incremented by the adopter to allow for distinct multiple configuration blocks.